If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+14x-17=0
a = 4; b = 14; c = -17;
Δ = b2-4ac
Δ = 142-4·4·(-17)
Δ = 468
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{468}=\sqrt{36*13}=\sqrt{36}*\sqrt{13}=6\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-6\sqrt{13}}{2*4}=\frac{-14-6\sqrt{13}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+6\sqrt{13}}{2*4}=\frac{-14+6\sqrt{13}}{8} $
| -171=19u | | x^2+14x-17=0 | | 8x-6=5x+21 | | 1+15+12z=12z+16 | | 11x+36=256 | | -5-20p+19=-18-20p | | 35=7-4d | | (3+m)=4m | | 16v+2=16v-17 | | 8x-x-x=180 | | 7x-49=147 | | 7x-4=12x+13 | | 17+7h=4h+5+3h | | -3u+1-19=-7u+14 | | -19+15b=15b+19 | | -2+12k-4K=8k-2 | | 6(b+1=8 | | 7g-11=16+7g | | 60/11=-4y | | 8+12y=+12 | | -14d-18=-14d-6-17 | | 4/4x-5=15 | | 7x+23+114=180 | | 14+5m=5m-16 | | 6y-8y=-24 | | 15+14j=9j-8+5j | | 3x-5=2.8 | | 15x+1=14x+3 | | (8+2x)(28+2x)=924 | | 1=7/6x | | 18x=3x | | x+.75x=154 |